Conditional Score-based Diffusion Models for Lung CT Scans Generation.
Chest CT scans are essential in diagnosing lung abnormalities, including lung cancer, but their utility in training deep learning models is often pushed back by limited data availability, high labeling costs, and privacy concerns. To address these challenges, this study explores the use of score-based diffusion models for the conditional generation of lung CT scans slices. Two generation scenarios are explored: one limited to lung segmentation masks and another incorporating both lung and nodule segmentation mappings to guide the synthesis process. The proposed methods are custom U-Net architecture models trained to predict the scores in Variance Preserving (VP) and Variance Exploding (VE) Stochastic Differential Equations (SDEs), composing the primary ground for comparison in conditional sample generation. The results demonstrate the VP SDEs model's superiority in generating high-fidelity images, as evidenced by high SSIM (0.894) and PSNR (28.6) values, as well as low domain-specific FID (173.4), MMD (0.0133) and ECS (0.78) scores. The generated images consistently followed the conditional mapping guidance during the generation process, effectively producing realistic lung and nodule structures, highlighting their potential for data augmentation in medical imaging tasks. While the models achieved notable success in generating accurate 2D lung CT scan slices given simple conditional image region mappings, future work surrounds the extension of these methods to 3D conditional generation and the use of richer conditional mappings to account for broader anatomical variations. Nevertheless, this study holds promise for improvement in computer-aided systems through the support in deep learning model training for lung disease diagnosis and classification.