Genome-edited allogeneic CAR-T cells: the next generation of cancer immunotherapies.

Chimeric Antigen Receptor T (CAR-T) cell therapy has revolutionized cancer immunotherapy, particularly in hematological malignancies. However, the clinical application of autologous CAR-T cells faces significant high cost and manufacturing challenges. Universal allogeneic CAR-T cells, derived from healthy donors, represent a promising solution to these obstacles. These "off-the-shelf" therapies aim to reduce the complexity and cost of CAR-T production. Despite exciting advancements in genome-editing technologies and promising clinical trial data, significant challenges remain, including graft-versus-host disease (GVHD), Host-versus-graft reaction (HVGR), off-target effects, genotoxicity, and manufacturing scalability. To address these concerns, genome-editing technologies such as ZFNs, TALENs, Meganucleases, CRISPR systems, base editing, and prime editing are being employed. This review summarizes the progress of universal allogeneic CAR-T cell therapies, addresses the critical challenges, and discusses the future directions for their clinical implementation.
Cancer
Care/Management

Authors

Su Su, Zeng Zeng, Song Song, Liu Liu, Ou Ou, Wu Wu, Huang Huang, Li Li, Tu Tu
View on Pubmed
Share
Facebook
X (Twitter)
Bluesky
Linkedin
Copy to clipboard